Fatty acid amide hydrolase (FAAH) inhibitor PF-3845 reduces viability, migration and invasiveness of human colon adenocarcinoma Colo-205 cell line: an in vitro study.

نویسندگان

  • Andrzej Wasilewski
  • Urszula Krajewska
  • Katarzyna Owczarek
  • Urszula Lewandowska
  • Jakub Fichna
چکیده

Earlier reports suggest that the endocannabinoids may play a role of endogenous tumor growth modulators. In this study, we investigated whether inhibition of the enzymes involved in the synthesis and degradation of endocannabinoids may reduce colorectal cancer cell invasion and migration. The human colon adenocarcinoma Colo-205 cells were incubated with PF-3845, JZL-184 and RHC-80267 (fatty acid amide hydrolase (FAAH), mono- (MAGL) and diacylglycerol lipase (DAGL) inhibitors, respectively) for 48 h. The MTT colorimetric assay was performed to quantify cell viability. Next, Colo-205 cells were incubated with PF-3845 alone or with PF-3845 together with selected antagonists: AM 251, AM 630, SB 366791, RN 1734 and G-15 (CB1, CB2, TRPV1, TRPV4 and GPR30 antagonists, respectively). Western blot assay was applied to identify the changes in CB1 and CB2 receptor expression. Migration and invasion assays were employed to characterize the effect of PF-3845 on colorectal cancer cell invasion. We found that of all the inhibitors used, the FAAH inhibitor PF-3845 reduced the Colo-205 cell line viability the most effectively (IC50=52.55 μM). We also showed that the effect of decreased cell viability was enhanced when Colo-205 cells were incubated with PF-3845 and RN-1734, a TRPV4 antagonist (IC50=30.54 μM). Western blot assay revealed significantly decreased CB1 receptor expression levels, while CB2 expression was increased in response to PF-3845 when compared to control. Furthermore, PF-3845 inhibited migration and invasion of Colo-205 cell line. These results suggest that pharmacological inhibition of FAAH and consequent enhancement of the endocannabinoid levels may reduce the colorectal cancer growth and progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain.

Endocannabinoids are lipid signaling molecules that regulate a wide range of mammalian behaviors, including pain, inflammation, and cognitive/emotional state. The endocannabinoid anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH), and there is currently much interest in developing FAAH inhibitors to augment endocannabinoid signaling in vivo. Her...

متن کامل

Fatty Acid Amide Hydrolase (FAAH) Inhibitors Exert Pharmacological Effects, but Lack Antinociceptive Efficacy in Rats with Neuropathic Spinal Cord Injury Pain

Amelioration of neuropathic spinal cord injury (SCI) pain is a clinical challenge. Increasing the endocannabinoid anandamide and other fatty acid amides (FAA) by blocking fatty acid amide hydrolase (FAAH) has been shown to be antinociceptive in a number of animal models of chronic pain. However, an antinociceptive effect of blocking FAAH has yet to be demonstrated in a rat model of neuropathic ...

متن کامل

Simultaneous inhibition of fatty acid amide hydrolase and monoacylglycerol lipase shares discriminative stimulus effects with Δ9-tetrahydrocannabinol in mice.

Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 5.6 mg/kg i.p.) discrimination...

متن کامل

Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.

Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, the...

متن کامل

Discriminative Stimulus Properties of the Endocannabinoid Catabolic Enzyme Inhibitor SA-57 in Mice.

Whereas the inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the respective major hydrolytic enzymes of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), elicits no or partial substitution for Δ(9)-tetrahydrocannabinol (THC) in drug-discrimination procedures, combined inhibition of both enzymes fully substitutes for THC, as well as produces a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 64 3  شماره 

صفحات  -

تاریخ انتشار 2017